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ABSTRACT
The time-variable velocity fields of solar-type stars limit the precision of radial-velocity
determinations of their planets’ masses, obstructing detection of Earth twins. Since 2015
July, we have been monitoring disc-integrated sunlight in daytime using a purpose-built solar
telescope and fibre feed to the HARPS-N stellar radial-velocity spectrometer. We present
and analyse the solar radial-velocity measurements and cross-correlation function (CCF)
parameters obtained in the first 3 yr of observation, interpreting them in the context of spatially
resolved solar observations. We describe a Bayesian mixture-model approach to automated
data-quality monitoring. We provide dynamical and daily differential-extinction corrections to
place the radial velocities in the heliocentric reference frame, and the CCF shape parameters
in the sidereal frame. We achieve a photon-noise-limited radial-velocity precision better than
0.43 m s−1 per 5-min observation. The day-to-day precision is limited by zero-point calibration
uncertainty with an RMS scatter of about 0.4 m s−1. We find significant signals from granulation
and solar activity. Within a day, granulation noise dominates, with an amplitude of about
0.4 m s−1 and an autocorrelation half-life of 15 min. On longer time-scales, activity dominates.
Sunspot groups broaden the CCF as they cross the solar disc. Facular regions temporarily
reduce the intrinsic asymmetry of the CCF. The radial-velocity increase that accompanies
an active-region passage has a typical amplitude of 5 m s−1 and is correlated with the line
asymmetry, but leads it by 3 d. Spectral line-shape variability thus shows promise as a proxy
for recovering the true radial velocity.

Key words: techniques: radial velocities – Sun: activity – Sun: faculae, plages –
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1 INTRODUCTION

The Sun is the only star that can be observed with spatial resolution
fine enough to discern the finest convective and magnetic elements
that decorate its surface. Tiny though they are, these small surface
elements have a profound impact on the integrated solar spectrum.
The contrast between the hot, upwelling cores of granules only a
few hundred km across and the cooler surrounding downflow lanes
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gives rise to global spectral-line asymmetries (Dravins, Lindegren &
Nordlund 1981). These asymmetries are strongly suppressed by
small-scale magnetic fields in the faculae that surround large sunspot
groups (Cegla et al. 2013). The finite number of granules, and
their finite lifetimes, gives rise to statistical fluctuations in the
global solar radial velocity (Ludwig 2006). The changing filling
factor of sunspots and faculae as the Sun rotates gives rise to
larger perturbations in global radial velocity and line asymmetries
(Meunier, Desort & Lagrange 2010).

Early campaigns to monitor the solar radial velocity in integrated
sunlight (e.g. Deming et al. 1987) were motivated by the need to
understand the intrinsic variability of solar-type stars at a time when
high-precision studies of stellar radial velocities (e.g. Campbell &
Walker 1979) were in their infancy. At about the same time, the
Birmingham Solar Oscillations Network (BiSON; Chaplin et al.
1996) started a 39-yr campaign of radial-velocity (RV) monitoring
of integrated sunlight, with the goal of using low-order p modes in
the solar oscillation spectrum to probe the Sun’s deep interior.

In the era of ultra-high precision radial velocity instruments such
as ESO’s High-Accuracy Radial-velocity Planet Searcher (HARPS;
Pepe et al. 2004) and its northern counterpart HARPS-N (Cosentino
et al. 2012), Keck’s High-Resolution Échelle Spectrometer (HIRES;
Vogt et al. 1994), the Echelle SPectrograph for Rocky Exoplanets
and Stable Spectroscopic Observations (ESPRESSO; Pepe et al.
2014) at the VLT, the EXtreme PREcision Spectrometer (EXPRES;
Jurgenson et al. 2016) at Lowell Observatory, and others following
up transiting terrestrial-sized planet candidates from the CoRoT,
Kepler/K2, and TESS space photometry missions, the need has
become acute to understand the frequency spectrum and origins
of stellar RV variability. Studies such as the recent ‘RV fitting
challenge’ of Dumusque et al. (2017) are designed to test the efficacy
of novel analysis tools for modelling star-induced RV variability as
part of the measurement process, and have highlighted the need to
understand the underlying physics.

Using an approach developed by Fligge, Solanki & Unruh (2000)
for modelling solar irradiance variations, Meunier et al. (2010)
pioneered the study of the effects of different types of solar activity
on the global solar radial velocity. By partitioning solar images from
the Michaelson Doppler Imager (MDI) aboard SoHo into quiet sun,
sunspot, and facular regions according to their continuum brightness
and magnetic flux density, and isolating the relative velocities
of the different components in the Dopplergrams, Meunier et al.
concluded that the dominant contributor to solar RV variability is
convective suppression of the granular blueshift. This prediction
was confirmed observationally by Haywood et al. (2016), who
used the same technique on images from the Helioseismic and
Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO)
to model RV variations in integrated sunlight reflected from asteroid
4/Vesta.

The HARPS-N solar telescope (Dumusque et al. 2015; Phillips
et al. 2016) was conceived with a longer term goal in mind: to
monitor precisely the solar radial velocity during the day using the
same instrument as is being used at night for measuring the reflex
orbital motions of exoplanet host stars. By using the stellar data-
reduction pipeline for the solar spectra, we aim to characterize the
impact of both solar variability and instrumental and data-reduction
systematics on the radial velocities delivered by the instrument.

The analysis of the solar data is complicated by two considera-
tions that do not apply to stellar targets. The observer and the target
are both participants in Solar system gravitational dynamics, and
the Sun is not a point source. The purpose of the present paper
is to describe the methods used to correct for these non-stellar

effects, transforming the data to the equivalent of the sidereal,
heliocentric frame. The goal is to separate the effects of solar
photospheric physics from those of Solar system dynamics and
differential atmospheric effects.

In Section 2, we describe briefly the instrument, the observing
strategy and the data-reduction pipeline. We develop a Gaussian
mixture-model approach to determine daily extinction coefficients
and to quantify the reliability of data points affected by short-
term obscuration of parts of the solar disc. We correct the radial
velocities for differential extinction across the solar rotation profile
and use the good data within a single day to assess the level of
residual p mode and granulation noise on minutes-to-hours time-
scales. In Section 3, we transform the radial velocities delivered
by the pipeline from the barycentric frame (which is dominated
by the synodic RV signal of Jupiter) to the heliocentric frame.
We provide algorithms for correcting line-profile moments of
the HARPS-N cross-correlation function (CCF) for the Earth’s
changing orbital velocity and the obliquity of the solar rotation
axis to the ecliptic. In Section 4, we analyse the behaviour of the
radial velocity and CCF profile parameters on time-scales from days
to years. We identify fluctuations in the width and asymmetry of
the CCF profile with the passages of sunspot groups and large
facular regions across the solar disc, respectively. We identify
correlations and temporal offsets between these parameters and
the radial velocity, and discuss their viability as proxy indicators
for disentangling exoplanetary orbital reflex motion from host-star
activity.

2 HARPS-N SOLAR TELESCOPE
OBSERVATIONS

2.1 Instrument and observing strategy

The HARPS-N solar telescope comprises a small guided telescope
on an amateur mount, housed in a perspex dome on the exterior of
the enclosure of the 3.58-m Telescopio Nazionale Galileo (TNG)
at the Observatorio del Roque de los Muchachos, Spain. Its 7.6-
cm achromatic lens of 200-mm focal length feeds sunlight via an
integrating sphere and an optical fibre into the calibration unit of
the HARPS-N spectrograph. The telescope, fibre feed, and control
systems are described by Phillips et al. (2016). Early results from the
instrument were published by Dumusque et al. (2015), confirming
that it achieves uniformity of throughput better than 1 part in
104 over the solar disc. This performance is essential to achieve
velocity precision of 10 cm s−1 across the width of the solar rotation
profile.

The instrument observes the Sun continuously each day, with
5-min integration times designed to average out solar p-mode
oscillations. The seasonal variations in hour angle are shown in
Fig. 1. Observing begins each clear day when the Sun rises above
an altitude of ∼20 deg, and ends either at the same altitude or earlier,
if the instrument is required for afternoon set-up by the night-time
observer.

2.2 HARPS-N data-reduction pipeline

The data are reduced using the same HARPS-N Data-Reduction
System (DRS) employed for night-time stellar radial velocimetry.
Calibration exposures taken after the end of solar observations and
before the start of night-time observing each day provide order-
by-order information on the locations of the echelle orders and the
wavelength calibration scale. Fabry–Perot exposures are recorded
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Figure 1. Hour angle coverage for all observations satisfying quality-
control criteria described in this paper from the start of operations in 2015
July up to the end of 2018 October. The vertical gridlines denote calendar-
year boundaries at the start of 2016, 2017, and 2018. The 3-month gap in
usable observations in late 2017 and early 2018 arose through damage to
the fibre coupling the solar telescope to the HARPS-N calibration unit. The
early-morning delay to the start of observations around mid-summer occurs
because the Sun rises behind part of the TNG enclosure.

simultaneously with the solar exposures to monitor instrumental
drift, via a second optical fibre from the spectrograph calibration
unit. Following optimal extraction (Horne 1986; Marsh 1989)
to obtain one-dimensional background-subtracted spectra in each
order, the data are calibrated in wavelength. They are then cross-
correlated with a digital mask (Baranne et al. 1996; Pepe et al.
2002) derived from a typical G2 stellar spectrum, and corrected
for instrumental drift derived from the Fabry–Perot spectrum. The
radial velocity is computed as the mean velocity of a Gaussian
fit to the CCF profile. The (dimensionless) contrast of the CCF is
expressed as the maximum depth of the fitted Gaussian, expressed
as a percentage of the surrounding pseudo-continuum. The area
W of the fitted Gaussian is then proportional to the product of
the contrast C and the full width at half-maximum depth (F ≡
FWHM):

W = CF

2

√
π

ln 2
. (1)

The units of W and F are the same, in this case velocities in km s−1,
because the pseudo-continuum of the CCF is normalized to unity.
Although C is normally expressed as a percentage, the expression
above treats it as a fraction 0 < C < 1. The ‘area’ is therefore defined
in a manner similar to the equivalent width of a single spectral
line.

The CCF itself is not perfectly symmetric, mainly because of the
convective asymmetry in solar and stellar line profiles resulting from
the brightness and velocity structure of the photospheric granulation
pattern. This asymmetry is quantified as the difference in the line-
bisector velocity in the upper and lower parts of the CCF, commonly
referred to as the Bisector Inverse Slope (BIS; Queloz et al.
2001).

The DRS computes the formal uncertainty in each radial velocity
by propagating the photon-noise error of the spectrum through all
stages of extraction and cross-correlation, into the CCF. The error
of the RV precision is then measured using the derivative of the
CCF (Bouchy, Pepe & Queloz 2001). The median RV precision
achieved with a standard 5-min exposure is 0.43 ms −1 in observing

conditions of high transparency; the upper 95th percentile is
0.77 m s−1.

2.3 Data-quality assessment

Under normal circumstances, the signal-to-noise ratio (SNR) of
the radial velocity is determined primarily by photon shot noise
and wavelength calibration error. Large systematic errors in the
radial velocity can, however, arise when part of the solar disc is
obscured, for example by cloud or by temporary tracking errors in
the telescope mount. This happens because the solar disc has a finite
angular diameter and a projected equatorial rotation speed of the
order of 2 km s−1. Partial obscuration of the solar disc distorts
the rotation profile and corrupts the measured radial velocity.
It is therefore mandatory to identify and flag data points with
anomalously low fluxes relative to neighbouring points.

The worst outliers are eliminated by rejecting the 5 per cent
of the data with the poorest estimated RV errors, followed by
an iterative 6σ clip of the radial velocities in the heliocentric
frame.

It is relatively straightforward to perform more rigorous auto-
mated data-quality assessment because the spectral fluxes observed
in cloud-free conditions should follow an exponential extinction law
as a function of airmass. To determine the apparent magnitude of the
Sun, we use the SNR estimate for pipeline order 60 (echelle order
98, central wavelength 6245 Å) recorded in the HARPS-N data
headers. The SNR is proportional to the square root of the recorded
photon count. We therefore construct a sequence of instrumental
magnitudes of which the i-th measurement is

yi ≡ m60,i = −5 log10 SN60,i , (2)

with corresponding magnitude uncertainty

σi = 2.5

ln 10

1

SN60,i

. (3)

On a day of near-optimal observing conditions, such as the clear
spring day affected by occasional scattered clouds illustrated in
Fig. 2, we expect the relation between the instrumental magnitude
m60(xi) in order 60 and the airmass xi of the centre of the solar
disc to be represented by a linear (Bouguer’s Law; Bouguer 1729)
model

m60(xi) = m60(x = 0) + k60xi

⇒ m60(xi) − m60(x̂) = k60(xi − x̂). (4)

The slope k60 of the linear extinction law is the primary extinc-
tion coefficient, while m60(x = 0) is the instrumental magnitude
extrapolated to zero airmass using the extinction law. We use the
inverse variance-weighted mean airmass x̂ and the corresponding
magnitude m60(x = x̂) as the origin for the linear regression, to
eliminate correlation between the slope and the zero-point of the
extinction law.

In addition to the fiducial magnitude m60(x̂) at the mean
airmass and the extinction coefficient k60, we include a white-
noise variance parameter σ 2

jit representing low-level transparency
fluctuations. This mitigates the risk of rejecting usable data in
observing conditions where the transparency is imperfect but
slowly varying, as is the case shown in Fig. 3 for a day af-
fected by the calima conditions often encountered in summer
when fine dust is blown westward from the Sahara desert over
the observatory. Even on a clear day, the extinction coefficient
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Figure 2. The upper panels show the instrumental magnitude in order 60 as functions of hour angle (left) and airmass (right) on a clear day (2018 April 3)
with good transparency but intermittent clouds or guiding errors during the day. The lower panels show the radial velocity corrected for differential extinction,
and the median probability for each data point that it belongs to the foreground (good) mixture population as given by equation (10) of Section 2.3: Pr (good
data) is synonymous with p(qi = 0|y). Points are colour coded from blue to red in order of descending median probability that they belong to the foreground
population. The extinction coefficient k60 and transparency fluctuation amplitude σ jit are small.

may vary subtly with time and/or hour angle (Poretti & Zerbi
1993).

It is not clear that simple methods such as iterative sigma-clipping
can make a reliable distinction between good and bad data under
calima conditions in particular. Instead, we adopt a more rigorous
and robust Bayesian mixture-model approach (e.g. Hogg, Bovy &
Lang 2010) to identify those data points that lie close enough to
the daily linear extinction law to be considered reliable, and to
distinguish them from a separate background population of outliers
that do not. For this purpose, we introduce a discrete classifier qi

that takes the value 0 for a good (‘foreground’) observation, and 1
for a ‘background’ outlier.

The extinction model yields the likelihood that a single measure-
ment yi = m60(xi) was obtained in good (i.e. qi = 0) conditions:

p(yi |xi, σi, θ, qi = 0) = 1√
2π(σ 2

i + θ2
3 )

× exp

(
− [yi − θ1 − θ2(xi − x̂)]2

2(σ 2
i + θ2

3 )

)
, (5)

where we have defined a vector of extinction-model parameters θ

such that θ1 ≡ m60(x̂), θ2 ≡ k60, and θ3 ≡ σ jit.
Outliers produced by clouds or guiding errors generally lie below

the linear relation, and are treated as having been drawn from a

distinct ‘background’ statistical population with mean bbg (relative
to the inverse variance-weighted mean ŷ) and variance σ 2

bg.
For a point drawn from the background (i.e. qi = 1) outlier

population, and an extended vector of model parameters θ ≡
{m60(x̂), k60, σjit, bbg, σbg} such that θ4 = bbg and θ5 = σ bg, the
likelihood is

p(yi |xi, σi, θ, qi = 1) = 1√
2π(σ 2

i + θ2
5 )

× exp

(
− [yi − ŷ − θ4]2

2(σ 2
i + θ2

5 )

)
. (6)

As Hogg et al. (2010) and Foreman-Mackey (2014) point out,
the marginal likelihood for the full data set can be expressed
as

p( y|x, σ , θ ) =
N∏

i=1

p(yi |xi, σi, θ ) , (7)

where N is the number of observations on the day in question,
and

p(yi |xi, σi, θ ) =
∑

qi

p(qi)p(yi |xi, σi, θ , qi). (8)
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Figure 3. As for Fig. 2, showing data obtained on 2017 August 20, a summer day affected by poor atmospheric transparency caused by the Saharan dust
conditions known as calima. The extinction coefficient and transparency fluctuations are high, but the spatial variations in extinction are smooth enough to
yield reliable velocities except when scattered clouds cause severe decreases in flux.

The simple prior, p(qi = 0) = Q and p(qi = 1) = 1 − Q, yields the
likelihood function

p( y|x, σ , θ ) =
N∏

i=1

[Qp(yi |xi, σi, θ , qi = 0)

+ (1 − Q)p(yi |xi, σi, θ , qi = 1)] (9)

(Hogg et al. 2010).
In the present application, the prior Q can be thought of as the

fraction of all observations obtained on a given day that belong
to the foreground (‘good’) population. It is a quantity that must
be derived from the data themselves, because weather conditions
change from day to day.

We sample from the distribution described by equation (9) using
a simple Markov-chain Monte Carlo scheme, saving the values
of p(yi|xi, σ i, θ , qi = 0) and p(yi|xi, σ i, θ , qi = 1) for each
sample for later use. This allows us to estimate the conditional
foreground probabilities marginalized over the model parameters
via the method described by Foreman-Mackey (2014):

p(qi | y) ≈ 1

M

M∑
m=1

p(qi | y, θ (m)), (10)

where M is the number of samples in the Markov chain. In this
expression, the conditional probability that a given data point i is
good (qi = 0) or bad (qi = 1) for a specified parameter set θ is given

by

p(qi | y, θ )

= p(qi)p( y|x, σ , θ , qi)

Qp( y|x, σ , θ , qi = 0) + (1 − Q)p( y|x, σ , θ , qi = 1)
. (11)

As before, the priors p(qi) take values Q and 1 − Q for qi = 0
and 1, respectively, while

p( y|x, σ , θ , qi = 0) =
N∏

i=1

p(yi |xi, σi, qi = 0) (12)

using equation (5) (and similarly for qi = 1 using equation 6).
The marginalized mixture membership probabilities described

by equation (10) (referred to hereafter as ‘mixture probabilities’)
provide a robust way of quantifying data quality. Fig. 4 illustrates
the performance of the model on a day of generally poor and
variable transparency, probably caused by cirrus cloud. Points
lying along the upper envelope of the airmass plot in the upper-
right panel follow a linear extinction law, indicating that they
were obtained in clear intervals between cloud passages. As in
Figs 2 and 3, the radial velocities of the observations classified
as having mixture probabilities greater than 0.9 of being ‘good’
(blue) show a much lower point-to-point scatter than those with
lower mixture probabilities (cyan, green, yellow, red). This confirms
that the mixture-model approach is successful, and that a threshold
probability of about 0.9 is appropriate for detecting and filtering out
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