N-resonances and atomic clocks

Irina Novikova, Sergei Zibrov, Yanhong Xiao, Chris Smallwood, David Phillips, Ronald Walsworth, Alexander Zibrov, Aleksei Taichenachev, Valeriy Yudin

1Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA, 2Physics Department, Harvard University, Cambridge, MA 02138, USA, 3Lebedev Physics Institute, Moscow, Russia, 4Moscow State Engineering Physics Institute, Moscow, Russia, 5Novosibirsk State University, Novosibirsk, Russia

Introduction

N-resonance is an all-optical three-photon-absorption resonance which may provide an alternative to Coherent Population Trapping (CPT) for atomic clocks:

- Improved contrast compared to CPT: 15% vs. 2-4%.
- Cancellation of first-order light-shifts and power dependence.

Three-photon absorption resonances

When the probe field (Ω_p) and drive field (Ω_0) have a difference frequency equal to the hyperfine frequency (ν_0) an absorption resonance is observed.

Experimental setup

- Rb cell inside magnetic shielding
- Fabry-Perot etalon
- Frequency synthesizer
- Slow frequency modulation
- Lock-in amplifier
- VCXO
- PID controller
- Frequency counter
- from hydrogen maser
- 6.835GHz frequency synthesizer
- EOM
- Laser
- Solenoid
- 6.835GHz
- Frequency synthesizer
- 87Rb level diagram
- $F=2$
- $F=1$
- $\nu_0 = 6.8 \text{ GHz}$
- Ω_p
- Ω_0
- ν_0
- $\nu = \nu_0 + \Delta$
- Modulated laser spectrum

Laser power dependence

- **linewidth**
- **contrast**

Light-shift measurements

- Performance improves at high buffer gas pressures

Analytical modeling:

Near the maximum:

$$\delta = -\frac{\Omega_p^2}{2\nu_0} + \frac{\Omega_0^2}{\gamma} - \frac{2\Omega_p^2}{\gamma^3} \left(\frac{\Delta - \gamma}{2}\right)^2 + \ldots$$

For laser detuning, $\Delta = \frac{\gamma}{2}$, and drive ratio, $\frac{\Omega_p^2}{\Omega_0^2} = \frac{\gamma}{2\Delta}$, light shift vanishes:

Coherent population trapping vs. N-resonance

<table>
<thead>
<tr>
<th></th>
<th>CPT*</th>
<th>N-resonances</th>
</tr>
</thead>
<tbody>
<tr>
<td>carrier field intensity</td>
<td>~200 mHz/(μW/cm²)</td>
<td>~0.01 mHz/(μW/cm²)</td>
</tr>
<tr>
<td>carrier field frequency</td>
<td>~1-10 mHz/MHz²</td>
<td>~0.4 mHz/MHz²</td>
</tr>
<tr>
<td>contrast</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>linewidth (Hz)</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

References