Temporal Dynamics of Hyperpolarized 129Xe Resonances in Living Rats

KUNIYOSHI SAKAI,* ANASTACIA M. BILEK,* EDUARDO OTEIZA,† RONALD L. WALSWORTH,† DILIP BALAMORE,‡
FERENC A. JOLYES,*, AND MITCHELL S. ALBERT*

*Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115; †Harvard–Smithsonian Center for Astrophysics, Cambridge, Massachusetts; and ‡Department of Engineering/Physics/Technology, Nassau Community College, Garden City, New York

Received April 16, 1996

Recent development of a magnetic-resonance technique using hyperpolarized noble gases (3He and 129Xe) has enabled imaging of the lung gas space (1, 2). While the extremely low solubility of 3He in the blood (3) precludes its use as a tissue imaging probe, 129Xe is highly lipophilic and soluble in blood and tissue, and thus holds promise for imaging and physiological studies such as white matter perfusion, heretofore not possible. Recently, hyperpolarized 129Xe tissue signals were reported from a live mouse (4). It remains unclear, however, what the lifetimes of different hyperpolarized 129Xe tissue resonances will be in vivo, and which tissue will yield distinguishable signals. In this paper, we report measurements of the xenon exchange and accumulation in the pulmonary tissue by examination of the wash-in and wash-out dynamics of hyperpolarized 129Xe signals and their lifetimes in living rats. The in vivo spectra exhibited four resolved peaks of hyperpolarized 129Xe resonances from gas, blood, and tissue phases (5, 6). In addition, imaging of the lung gas space was performed using hyperpolarized 129Xe. These results suggest applications of the hyperpolarized 129Xe MRI technique for ventilation–perfusion studies of the lung.

The novel technique of noble gas hyperpolarization, by collisional spin exchange with optically pumped rubidium vapor, yields up to a hundred thousandfold enhancement in spin polarization and MR detectability (7–10). We used natural-abundance xenon (26% 129Xe), which was contained in a 25 cm3 cylindrical glass cell, at 3 atm, along with 3He buffer gas and a small quantity of solid Rb. 129Xe was hyperpolarized in the fringe field of a 4.7 T superconducting magnet (Oxford Instruments, Oxford, UK). Circularly polarized 795 nm light from diode laser arrays (Optopower, Tucson, Arizona) was used for optical pumping of the Rb vapor. After 30 min of optical pumping at 90–100°C, the glass cell was rapidly cooled in ice water to remove the Rb vapor by condensation onto the cell walls. The hyperpolarized 129Xe was extracted by connecting a 25 cm3 glass cell immersed in liquid nitrogen, for cryopumping the 129Xe from the hyperpolarization cell. The frozen 129Xe was then warmed to room temperature, with minimal loss of its hyperpolarization after sublimation. The hyperpolarized 129Xe gas was transferred to a 50 cm3 glass syringe prior to use.

Sprague–Dawley rats (400–500 g) were anesthetized with intramuscular injections of ketamine (24 mg/kg) and xylazine (6 mg/kg). A 14 gauge Teflon catheter was inserted into the trachea, and silk ligatures were tied around the endotracheal tube. The animal was then placed in a short birdcage detector coil covering only the thorax. The hyperpolarized 129Xe gas was delivered from the syringe to the animal’s lungs via a 24 gauge catheter that was inserted coaxially into the 14 gauge catheter. The animal breathed naturally through the open end of the 14 gauge catheter. In each spectroscopy experiment, four 10 cm3 boluses of hyperpolarized 129Xe were administered at 4–5 s intervals. The use of an open delivery system allowed excess xenon to escape without injuring the animal from a dangerous built-up pressure. Furthermore, the excess xenon gas was expelled outside the pickup coil. All rats showed no discomfort after the xenon delivery, indicating that the xenon ventilation and the method of delivery were well tolerated. The care and use of animals in these experiments were approved by the Harvard Medical School Standing Animal Committee and conformed with the guidelines set forth by the National Institute of Health (11).

129Xe spectra were obtained at 55.35 MHz on a 4.7 T Omega spectroscopy/imaging system (Bruker Instruments, Fremont, California). A spectral window of 25.0 kHz covered both gas and tissue 129Xe resonances. The transmitter frequency was set to 160 ppm downfield from the gas resonance. Free-induction decay data were acquired with low flip-angle (26°) rectangular pulses (pulse width, 100 μs) at 1–3 s intervals. The data were baseline corrected, apodized by Gaussian multiplication (50 Hz for Figs. 1 and 2), and Fourier transformed. Hyperpolarization lifetimes were estimated by the method of least squares for single-exponential line fitting for decaying signals, after correcting the signal magnitudes of each spectral peak for the amount of depolarization induced by the RF excitations.
We observed hyperpolarized 129Xe resonances from the pulmonary system of living rats. Figure 1a illustrates the first spectrum obtained in one experiment during the decay and wash-out phase of hyperpolarized 129Xe. The spectrum shows a large lung gas peak at 0 ppm and three distinct peaks at 191 ppm (peak A), 199 ppm (peak B), and 213 ppm (peak C). The chemical shifts of the three peaks, obtained from four separate experiments with different rats, are shown in Table 1.

Figure 1b displays a stacked plot of the hyperpolarized 129Xe spectra during the time course of the experiment and reveals the decay of the 129Xe resonances in vivo. Data acquisition was commenced during delivery of the last xenon bolus ($t = 0$) and spectra were collected every 3 seconds (TR = 3 s). The lung gas peak, peak B, and peak C reach maxima within 3 s and then decay, whereas peak A reaches a maximum at 6 s. The time course of the gas 129Xe signal reflects not only its own T_1 decay, but also gas exchange with the external air and transport of xenon from the lung space to the pulmonary capillaries. The polarization lifetime constants of 129Xe signals in the blood and tissue are designated here as T_1^p (apparent T_1) and reflect not only T_1 decay, but also wash-out processes including the multicompartamental circulation of xenon in the blood and tissue. Measurements of peak B and peak C yielded T_1^p values of 26.0 ± 2.8 and 11.4 ± 2.2 s, respectively (Table 1). On the other hand, peak A decayed much more slowly with a T_1^p of 49.6 ± 13.8 s (Table 1). The correlation coefficients for the line fitting ranged between 0.77 and 0.98.

Further wash-in experiments shown in Fig. 2, in which data acquisition was started ($t = 0$) before the first hyperpolarized 129Xe bolus delivery, reveal the temporal dynamics of the individual peaks. The oscillation of the lung gas peak

<table>
<thead>
<tr>
<th>Peak</th>
<th>Data set</th>
<th>Chemical shift (ppm)</th>
<th>T_1^p (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>191.9</td>
<td>30.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>191.4</td>
<td>50.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>191.4</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>191.0</td>
<td>62.1</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>191.4 ± 0.4</td>
<td>49.6 ± 13.8</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>199.8</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>198.1</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>199.4</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>198.5</td>
<td>27.6</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>199.0 ± 0.8</td>
<td>26.0 ± 2.8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>212.2</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>214.4</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>212.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>213.1</td>
<td>11.1</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>213.1 ± 1.0</td>
<td>11.4 ± 2.2</td>
<td></td>
</tr>
</tbody>
</table>

* The frequency of the lung gas peak was set to 0 ppm for reference in each of the four separate experiments. Peaks A, B, and C correspond to the peaks shown in Fig. 1a.
FIG. 2. Wash-in dynamics of individual 129Xe resonances. Data acquisition was started ($t = 0$), 3 s before the first xenon bolus. The same phase corrections were applied to all of the Fourier transformed data. For each peak, averaged signal intensities within a 2 ppm window in each spectrum were plotted against time. Noise amplitude mean was $(4.1 \pm 0.2) \times 10^3$, calculating the standard deviation of signal intensity for spectral points where there is no peak in each spectrum. (a) Temporal dynamics of the lung gas peak. The oscillation of this signal is due to the pulsed delivery of 129Xe boluses (thick bars) into the lung. (b) Temporal dynamics of peak C. Note that the oscillation of peak C closely follows that of the lung gas peak with a 1–2 s delay. (c) Temporal dynamics of peak B. Note the different scale of the ordinate. (d) Temporal dynamics of peak A. Note that peak B shows a steady rise followed by the more gradual rise of peak A.

(Fig. 2a) displays the pulsed delivery of 129Xe boluses (thick bars along the abscissa) into the lung. The oscillation of peak C (Fig. 2b) closely follows that of the lung gas peak (Fig. 2a), but with a 1–2 s delay. In contrast, peak B shows a steady rise (Fig. 2c), followed by the more gradual rise of peak A (Fig. 2d). These distinct time courses reflect hyperpolarized 129Xe wash-in processes; the lung gas peak and peak C probably indicate 129Xe exchange processes, whereas peak B and peak A likely reflect 129Xe accumulation processes. These results provide clues for the assignment of the 129Xe resonances.

We suggest a possible assignment of the four distinct peaks in the hyperpolarized 129Xe spectra. The peak at 0 ppm (reference) is clearly from the lung gas, both because it is the largest peak when 129Xe gas is delivered into the lung and because its frequency corresponds to that of 129Xe gas in a glass cell. The assignment of the other three 129Xe peaks is partially based on a comparison with the chemical-shift values from a previous in vitro study of thermally polarized 129Xe in the plasma and red blood cell (RBC) components of human venous blood (12). In that study, the 129Xe plasma signal was observed at 194 ppm downfield from the gas peak, whereas the 129Xe RBC signal was observed at 216 ppm. Because of their relative chemical shifts, we suggest that peak A at 191 ppm and peak C at 213 ppm correspond to 129Xe in the plasma and RBC components, respectively. The 3 ppm difference between in vivo and in vitro data is probably a volume susceptibility effect, as the in vitro data were obtained from a spherical sample. Thermally polarized 129Xe dissolved in a cylindrical sample of beef fat in vitro also exhibits a signal with a 191 ppm chemical shift; we propose that peak A is a superposition of both plasma and adipose tissue signals. Furthermore, the wash-in dynamics of peak C, which closely follows that of the lung gas peak (Figs. 2a, 2b), indicates that 129Xe rapidly exchanges into the RBCs [most probably binding to hemoglobin (13)]. The RBCs in alveolar capillaries are separated from the lung gas space by an extremely thin blood–gas barrier of pulmonary tissue (14). The rapid appearance of the putative RBC signal (peak
FIG. 3. MR lung images of a living rat. (a) Temporal sequence of consecutive axial images of hyperpolarized 129Xe signals from the lung gas space. The sequence follows from the left to the right side, from the top to the bottom row. Note that the region of the highest 129Xe signal shows lower intensity in later frames. These images were acquired with a FLASH pulse sequence ($TR = 21\, ms;\, TE = 10.5\, ms;\, \text{flip angle,}\, 30^\circ;\, \text{in-plane resolution,}\, 2.3 \times 4.7\, \text{mm}^2;\, \text{slice thickness,}\, 15\, \text{mm}$), while xenon gas was delivered in short boluses every 0.5 s. The acquisition time for each image was 1.3 s. (b) The summed image from the six images shown in (a). (c) A corresponding axial 1H image of the same animal. This image was acquired with a spin-echo pulse sequence with T_1 weighting ($TR = 500\, ms;\, TE = 18\, ms;\, \text{in-plane resolution,}\, 0.35 \times 0.35\, \text{mm}^2;\, \text{slice thickness;}\, 10\, \text{mm}$) on a 1.5 T Signa imaging system (GE Medical Systems, Fremont, California).

C) is consistent with xenon’s high affinity for hemoglobin (13) and close proximity of the RBCs to the gas space in the alveolar capillaries. The delayed appearance and slow accumulation of peak A (Fig. 2d) may be due to diffusion of 129Xe from the RBCs into the plasma and then into adipose tissue. The plasma pool may include plasma in blood vessels distal to the capillary network of the lung. The longer rise time for peak A is consistent with its long T^*_1.

Because peak B appears simultaneously with peak C (Figs. 2b, 2c), we suggest that peak B corresponds to 129Xe in pulmonary tissue. Pulmonary tissue includes the layer of surfactant, alveolar epithelium, interstitium, and capillary endothelium (14). The pulmonary tissue adjacent to the capillaries is in contact with the lung gas, which would allow for an early onset of the tissue signal (peak B). The picture that emerges from our peak assignment is that inhaled hyperpolarized 129Xe first washes into the RBCs in transit in the alveolar capillaries and into pulmonary tissue in contact with the gas. The 129Xe in the RBCs then gradually washes out into the plasma and adipose tissue, giving rise to peak A.

Because we have used a periodic 129Xe bolus delivery procedure in the wash-in experiments, the concentration of hyperpolarized 129Xe in the lung gas space, has a periodicity (Fig. 2a). Taking account of the T^*_1 of 11.4 s for the putative RBC signal (peak C) in the wash-out experiments, the observed loss (about 50%) of the RBC signal over the interbolus interval (Fig. 2b) indicates that the signal decay is dominated by T^*_1. The longer T^*_1 of the putative pulmonary tissue signal (peak B) damps the amplitude of the periodic variation, and we merely see a period of accumulation (Fig. 2c).

The interpretation of the rather long T^*_1 of 49.6 s for the putative combined signals from the plasma and adipose tissue (peak A) requires careful explication. We have observed that the T_1 in oxygenated human blood in vitro is 13.5 s, dropping to 4.2 s in human venous blood (15). This trend has been confirmed in another in vitro study using a different procedure (16). Given that the blood circulation time in the rat is only several seconds long (17), the deoxygenation that sets in, as the blood reaches the venous part of the circulation, should eradicate the plasma signal quickly. The short T_1 of 129Xe in venous blood implies that recirculation of hyperpolarized 129Xe is insignificant. The long T^*_1 of peak A, therefore, compels us to postulate the existence of reservoirs, possibly adipose tissue, where 129Xe becomes sequestered when arterial blood is rich in hyperpolarized 129Xe, and enables the 129Xe signal to be maintained.

Previously, an in vivo xenon signal in tissue, at about 199 ppm, with a T^*_1 of about 20 seconds, was reported from a mouse (4). While consistent with our present results, the broad linewidth of the peak precluded assignments of tissue
resonances in that report. The long-lasting \textit{in vivo} blood and tissue signals reported here advance the prospect of imaging with hyperpolarized 129Xe. Furthermore, the spectral resolution achieved should permit acquisition of chemical shift-selected 129Xe images of the gas space, blood vessels, and tissue. Figure 3a shows a sequential time series of six hyperpolarized 129Xe images of the lung gas space from a living rat. Figure 3b shows the image sum of all six images of the series. The two lungs are clearly visible, and correspond to signal voids in the corresponding proton image (Fig. 3c). An important clinical use may be in the performance of both ventilation and perfusion imaging of patients with pulmonary pathology.

\section*{ACKNOWLEDGMENTS}

This work was supported by the Uehara Memorial Foundation (K.S.); the Whitaker Foundation (M.S.A.); and the Air Force Office of Scientific Research, the George W. Burch Foundation, and the Smithsonian Institution (E.O., R.L.W.). We thank Daniel Kacher, Ching-Hua Tseng, and Glenn Wong for technical assistance, Drs. Daniel Williamson and Robert Mulkern for stimulating discussions, and K.S. thanks Drs. Yasushi Miyashita and Bruce Rosen for their encouragement.

\section*{REFERENCES}

