INTRODUCTION

Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s\(^{-1}\) (ref. 1). To find a 1-Earth-mass planet in an Earth-like orbit, a precision of ~5 cm s\(^{-1}\) is necessary. The combination of a laser frequency comb with a Fabry–Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration\(^2\). Here we report the fabrication of such a filtered laser comb with up to 40-GHz (~1-Å) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb (astro-comb) is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s\(^{-1}\) in astronomical radial velocity measurements.

LIMITATIONS OF OTHER CALIBRATORS

- Iodine absorption cells
 - attenuate star light
 - only cover 5,000-6,200 Å band
 - have non-uniform spectrum
- Thorium-Argon discharge lamps
 - deteriorate over time
 - have low intensity
 - have non-uniform spectrum
 - have unstable bright Ar lines
 - only calibration source in the red to IR band
 - no identical lamps

ASTRO-COMB : IDEAL WAVELENGTH CALIBRATOR

- Systematic control
 - long-term stability
 - reproducibility
 - frequency defined by UTC (Coordinated Universal Time) frequency standard
- Wavelength calibration ability
 - uniform density and intensity of the calibration lines
 - calibration line spacing matches resolving power of astrophysical spectrographs
 - potentially able to provide lines covering entire spectral range of interest
 - allows comparison of data from all observatories over years
- Only requires 1-MHz stability on the FP cavity while the astro-comb lines are stable to 10 kHz.

1-GHz SOURCE COMB

- Frequency of >10\(^5\) emission lines uniquely determined by 2 parameters
 - \(f_{\text{comb}} = m f_{\text{rep}}\)
- Octavius (Menlosystems)
 - octave spanning (600 nm – 1,200 nm)
 - Ti:Sa oscillator
 - 6 fs mode lock pulse laser
 - double chirped mirror design
- Stabilization
 - \(-2\)f\(^{-1}\) self-referencing
 - >30 dB f\(_{\text{rep}}\) beat (100-kHz BW)
 - 1-GHz f\(_{\text{rep}}\)
 - \(f_{\text{comb}}\) and \(f_{\text{rep}}\) referenced to GPS
 - Compact and robust housing provides optimal temperature and environmentally stabilization.

CALIBRATION LINES AT ~8,500 Å

- Enables 1-cm s\(^{-1}\) sensitivity in radial velocity detection
 - Search for exo-Earths
 - A direct measurement of the expansion of the universe in <10 years. (Sandage-Loeb test) – the study of dark energy
 - Search for dark matter in globular clusters
 - Search for temporal variation of fundamental physical “constants”
 - Study of stellar seismology
 - Will be deployed to calibrate Hectochelle spectrograph at the MMT as first demonstration.
 - Will be deployed at HARPS-NEF in 2009.

REFERENCE: